
Magento Connector Documentation

Intuiko for Connected Store

contact@intuiko.com
(+33) 1.77.530.679

www.intuiko.com
50 rue de Paradis - 75010 Paris

Do not copy © Intuiko 2014 — All rights reserved

V 1411.13

Contents

Setup & Configuration									 3

	 INSTALL											 3

	 CONFIGURATION										 4

	 UNINSTALL											 5

	 ENABLE OR DISABLE									 5

Functional scope										 6

	 CATALOGUE										 6

	 TUNNEL	 										 11

	 CUSTOMER	 										 15

Omni-channel considerations								 20

	 MAGENTO PRODUCT TYPES								 20

	 CUSTOM OPTIONS										 20

Do not copy © Intuiko 2014 — All rights reserved

3/20Setup & Confi gurationDo not copy
© Intuiko 2014 — All rights reserved

This section of the documentation will provide you with information about the Magento Connector developed
for Intuiko for Connected Store.

Our Connector supports the following versions of Magento:

• Community Edition : 1.8.1.0 & 1.9.0

• Enterprise Edition : 1.13

All screenshots featured in the present documentation are taken from a Magento 1.8.1.0 Community Edition.

Also, please keep in mind that all the following information applies to an “Out Of The Box” Magento. Any specifi c
development impacting the relations between Magento and ICS will have to be the subject of a connector
override.

If you fi nd yourself in need of more information about the conceptual model behind ICS and/or our public API,
you should have a look at our Documentation Introduction and/or our API Documentation.

Setup & Confi guration

INSTALL
To install the connector, you need the latest version of this package: ics-magento-connector-Vxx.tgz (where
the xx stands for the version number).

Log into your Magento Admin panel and go to System >> Magento Connect >> Magento Connect Manager:

In the Direct package fi le upload part, click the Choose File button and select the package ics-magento-
connector-Vxx.tgz. Please check that your package has the .tgz extension before selecting it.

Click the Upload button and refresh the page once the upload is completed.

If the plan comes together—and everyone just loves it when it does—, the module will now appear in the list
of packages featured in the Manage Existing Extensions part.

4/20Setup & Confi gurationDo not copy
© Intuiko 2014 — All rights reserved

CONFIGURATION
In order to confi gure the ICS Magento Connector, you fi rst need to log out of your Magento Admin panel and
back into it.

Go to System >> Confi guration >> Connected Store >> Parameters and fi ll in all the fi elds under Connection
Parameters:

Field Description

ICS Connector Status To activate or deactivate the connector (see page 5 of this documentation).

Tenant Id Your ICS identifi er as our customer.

Url Service The URL of the ICS API (HTTP or HTTPS protocol).

Brand Id The ICS identifi er of your brand.

Api Key Your key, which ensures the security of all data exchanges with the API.

Bag Merge Method The method used when two existing bags are merged into a new one (see
page 15 of the API Documentation).

ICS API Calls Timeout (ms)
The time limit, in milliseconds, for the calls made to the API (when a HTTP
call falls into time-out, the user’s calls are not made any more during their
session).

You can validate your connection to the ICS API by clicking the Test Connection button. However, please save
the modifi cations you made to the confi guration before testing the connection.

A returned success message validates the connection to the API.

5/20Setup & Confi gurationDo not copy
© Intuiko 2014 — All rights reserved

UNINSTALL
To uninstall the ICS Magento Connector, log into your Magento Admin panel and go to System >> Magento
Connect >> Magento Connect Manager.

Scroll down the list of packages featured in the Manage Existing Extensions part until you fi nd ICS_Connector.
In the drop-down menu, select Uninstall and click the Commit Changes button:

ENABLE OR DISABLE
By default, the ICS Magento Connector is deactivated after its installation is completed. If the connector is not
active, there is no communication whatsoever between Magento and ICS.

To activate the connector, log into your Magento Admin panel and go to System >> Confi guration >> Connected
Store >> Parameters. In the drop-down menu next to ICS Connector Status, select Enable and click the Save
Confi g button.

To deactivate the connector, do exactly what is said in the paragraph above, with the exception of selecting
Disable in the drop-down menu next to ICS Connector Status.

6/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

Functional scope

In this section of our Magento Connector documentation, you will fi nd more about what it actually does and
how the API and Magento interact with each other. It is divided into three parts:

• Catalogue

• Tunnel

• Client

Let’s get to it, shall we?

CATALOGUE
Product List / Search Results
On this page, your customer gets the results of a specifi c search or see a list of products which belongs to
a specifi c category. They have the possibility to add a product to their wishlist or cart—if they do not have to
customize it—or to the product comparison page. They can also go to the product details page.

7/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

ADDING A PRODUCT TO THE CART:
• If the product has discriminants, the customer is redirected to the product details page.

• If the product has no discriminant:

1. The customer adds a single quantity of the product to their cart.

2. Magento sends a controller_action_predispatch event before modifying its cart.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent
cart may have been modifi ed by another application). If need be, the connector refreshes the Magento
cart.

5. Magento adds the product to its cart and sends a checkout_cart_save_after event.

6. The connector picks up this event and recovers the current Magento cart.

7. The connector saves this recovered cart on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

ADDING A PRODUCT TO THE WISHLIST
1. The customer adds a single quantity of the product to their wishlist.

2. Magento sends a controller_action_predispatch event before modifying its wishlist.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the whishlist information are up to date (e.g. the ICS permanent
wishlist may have been modifi ed by another application). If need be, the connector refreshes the Magento
wishlist.

5. Magento adds the product to its wishlist and sends a wishlist_items_renewed event.

6. The connector picks up this event and recovers the current Magento wishlist.

7. The connector saves this recovered wishlist on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

8/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

Product details page
This page gives the detailed information of the product to your customer. They have the possibility to customize
their product—if it has one or several discriminants—and choose the quantity they want to buy. They can add
these quantities to their wishlist or cart or to the product comparison page.

ADDING A PRODUCT TO THE CART
1. The customer chooses a quantity and fi lls in the discriminant fi elds when required.

2. The customer then clicks the Add to cart button.

3. Magento sends a controller_action_predispatch event before modifying its cart.

4. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

5. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

6. Magento adds the product (with the information provided by the customer) to its cart and sends a checkout_
cart_save_after event.

7. The connector picks up this event and recovers the current Magento cart.

9/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

8. The connector saves this recovered cart on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

ADDING A PRODUCT TO THE WHISHLIST
1. The customer chooses a quantity and fi lls in the discriminant fi elds when required.

2. The customer then clicks the Add to wishlist button.

3. Magento sends a controller_action_predispatch event before modifying its wishlist.

4. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

5. This call allows the connector to check that the wishlist information are up to date (e.g. the ICS permanent
wishlist may have been modifi ed by another application). If need be, the connector refreshes the Magento
wishlist.

6. Magento adds the product (with the information provided by the customer) to its wishlist and sends a
wishlist_items_renewed event.

7. The connector picks up this event and recovers the current Magento wishlist.

8. The connector saves this recovered wishlist on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

Cross-selling
With the cross-selling spots of Magento, your customer have the possibility to add a product to their wishlist or
cart—if they do not have to customize it—or to the product comparison page. They can also go to the product
details page.

The ICS mechanisms at play here are the same as explained in the Product details page section, pages 8 and
9 (oddly enough, they happen to be this very page and the previous one).

10/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

Product comparison page
On this page, your customer have the possibility to compare the details of the various products they added to
it If they want to do so, they may add one product at a time to their wishlist or cart.

The ICS mechanisms at play here are the same as explained in the Product details page section, pages 8 and 9.

Compatible product types
At this time, the ICS Magento connector and its services are compatible with all product types provided by
Magento, whether they include options or not. Those types are:

• simple

• confi gurable

• groups

• bundle

• downloadable

• virtual

However, omni-channel functionalities are only compatible with the simple type—whether it has
discriminants or not—but without any option.

11/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

TUNNEL
Cart page
This page sums the contents of your customer’s current cart up. From it, they have the possibility to:

• modify or customize a product;

• delete a product;

• add a product to their wishlist;

• empty their cart;

• modify quantities on various lines at one time;

• consult a product details page;

• add a coupon;

• modify or delete a current coupon;

• proceed to a checkout order.

CONSULTING THE CART
1. The customer requests the display of their cart.

2. Magento sends a controller_action_predispatch event.

12/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

MODIFYING THE CART
1. The customer modifi es something (e.g. modifying a quantity, deleting a product, adding, modifying or

deleting a coupon) and clicks the button which validates this modifi cation.

2. Magento sends a controller_action_predispatch event before modifying its cart.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/enants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

5. Magento saves the modifi cations and sends a checkout_cart_save_after event.

6. The connector picks up this event and recovers the current Magento cart.

7. The connector saves this recovered cart on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

MOVING A PRODUCT TO THE WISHLIST
1. The customer clicks the Move to wishlist button.

2. Magento sends a controller_action_predispatch event before modifying its cart.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

5. Magento modifi es its cart by deleting the product and sends a checkout_cart_save_after event.

6. The connector picks up this event and recovers the current Magento cart.

7. The connector saves this recovered cart on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

8. Magento sends a controller_action_predispatch event before modifying its wishlist.

9. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

10. This call allows the connector to check that the wishlist information are up to date (e.g. the ICS permanent wishlist
may have been modifi ed by another application). If need be, the connector refreshes the Magento wishlist.

13/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

11. Magento modifi es its wishlist by adding the product and sends a wishlist_items_renewed event.

12. The connector picks up this event and recovers the current Magento wishlist.

13. The connector saves this recovered wishlist on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

EDITING A PRODUCT
1. The customer clicks the Edit button and is redirected to the product details page.

2. They can modify the discriminants and/or quantities of the product.

3. They validate their modifi cations by clicking the Update cart button, which replaces the Add to cart button.

4. What happens next is described in the Product details page section of this documentation, page 8.

Automatic synchronization
The controller_action_predispatch event allows an automatic synchronization between a customer’s
Magento cart and ICS cart. The same goes for the customer’s Magento whishlist and ICS whishlist.

Thus, for each action made by the customer on Magento, the connector will check if the cart and/or wishlist are
up to date with ICS and will modify their data on Magento, if need be.

Checkout page
On this page, your customer will complete the order process. They will have the possibility to create a new
account or to log into an existing one, if they have not done so already, or to complete their order as a guest.
They will have to enter all the required information and then validate the order.

14/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

• If the customer logs into their account, the ICS mechanisms at play are the same as explained in the Login
page section, page 15.

• If the customer creates a new account, the connector makes a REST call to associate the current cart to the
newly created account, thus making it the customer’s reference cart:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

• If the customer chooses to remain anonymous—guest mode—, ICS will only know their e-mail address.

FINAL CHECKOUT

1. Magento sends a controller_action_predispatch event before modifying its cart.

2. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

3. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

4. Magento saves the modifi cations and sends a checkout_submit_all_after event.

5. The connector picks up this event and recovers the current Magento cart.

6. The connector saves this recovered cart as checked out on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

15/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

CUSTOMER
Login page
On this page, an anonymous customer has the possibility to log into their existing account—by using their
e-mail and password—or to create a new account.

1. The customer enters their e-mail address and password, assuming they have created an account by now,
and Magento sends a customer_login event.

2. The connector picks up this event and makes a fi rst REST call to save the customer’s information on ICS:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/customers/

3. The connector makes another REST call to look for the identifi er of a possible current cart stocked on ICS:

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/_search

• If this possible cart does exist and if an anonymous cart was being fi lled:

a. The connector makes a REST call to merge the two carts:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/_merge

b. The result of this merge becomes the customer’s reference cart. The anonymous cart is then deleted
by another REST call:

PUT https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/_delete

16/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

• If this possible cart does not exist and if an anonymous cart was being fi lled, this not-so-anonymous-
cart-now becomes the customer’s reference cart.

• If this possible cart does not exist and if no anonymous cart was being fi lled, the ICS cart remains the
customer’s reference cart.

• If a Magento customer who does not exist on ICS has a permanent Magento cart and if no anonymous
cart was being fi lled, the permanent Magento cart becomes the reference cart of the customer, who will
then be created on ICS.

4. The reference cart is loaded into Magento and then saved on ICS (thus, ICS makes sure that all of the
products in the cart may be added to the Magento cart—stock, price, etc.):

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

5. The connector makes another REST call to recover the authenticated customer’s possible wishlist:

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/_search

6. If there is a wishlist, the connector uploads it into Magento.

7. The dates of the latest modifi cations made on the ICS cart and/or ICS wishlist are saved on the customer’s
Magento session. This will allow an automatic synchronization process between the connector and ICS.

Wishlist page
This page sums the contents of your customer’s current wishlist up. From it, they have the possibility to:

• modify or customize a product;

• delete a product;

• add a product to their cart;

• add all products to their cart at one time;

• modify quantities on various lines at one time;

• consult a product details page.

17/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

CONSULTING THE WISHLIST
1. The customer requests the display of their wishlist.

2. Magento sends a controller_action_predispatch event.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the wishlist information are up to date (e.g. the ICS permanent
wishlist may have been modifi ed by another application). If need be, the connector refreshes the Magento
wishlist.

MODIFYING THE WISHLIST
1. The customer modifi es something (e.g. modifying a quantity, deleting a product, modifying a comment) and

clicks the button which validates this modifi cation.

2. Magento sends a controller_action_predispatch event before modifying its wishlist.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the wishlist information are up to date (e.g. the ICS permanent
wishlist may have been modifi ed by another application). If need be, the connector refreshes the Magento
wishlist.

5. Magento saves the modifi cations and sends a wishlist_items_renewed event.

6. The connector picks up this event and recovers the current Magento wishlist.

7. The connector saves this recovered wishlist on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

MOVING A PRODUCT OR ALL PRODUCTS TO THE CART
1. The customer clicks the Add to cart or Add all to cart button.

2. Magento sends a controller_action_predispatch event before modifying its wishlist.

3. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS wishlist (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

4. This call allows the connector to check that the wishlist information are up to date (e.g. the ICS permanent
wishlist may have been modifi ed by another application). If need be, the connector refreshes the Magento
wishlist.

5. Magento modifi es its wishlist by deleting the product(s) and sends a wishlist_items_renewed event.

6. The connector picks up this event and recovers the current Magento wishlist.

7. The connector saves this recovered wishlist on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

18/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

8. Magento sends a controller_action_predispatch event before modifying its cart.

9. The connector picks up this event and makes a REST call containing the date of the latest modifi cation
made to the ICS cart (stocked by the controller):

GET https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

10. This call allows the connector to check that the cart information are up to date (e.g. the ICS permanent cart
may have been modifi ed by another application). If need be, the connector refreshes the Magento cart.

11. Magento modifi es its cart by adding the product(s) and sends a checkout_cart_save_after event.

12. The connector picks up this event and recovers the current Magento cart.

13. The connector saves this recovered cart on ICS by making a REST call:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/bags/

EDITING A PRODUCT
1. The customer clicks the Edit button and is redirected to the product details page.

2. They can modify the discriminants and/or quantities of the product.

3. They validate their modifi cations by clicking the Update wishlist button.

4. What happens next is described in the Product details page section of this documentation, page 8.

Account information
On this page, a customer can modify their account information:

1. The customer changes their information and clicks the Save button.

2. Magento saves the information and sends a controller_action_predispatch event.

3. The connector picks up this event and the customer’s information, and makes a REST call to save the
customer’s account on ICS:

POST https://api-ics.intuiko.com/api/tenants/tenantId/brands/brandId/customers/

19/20Functional scopeDo not copy
© Intuiko 2014 — All rights reserved

Recent orders
This graphical component gives your customer a list of all their checked-out orders, allowing theme to reorder
all the products of a previously ordered cart.

The ICS mechanisms at play here are the same as explained in the Product details page section, pages 8 and
9. However, they do not apply to only one product but to all products featured in a previous order.

My orders
This graphical component allows your customer to add a previously ordered product to their cart. They also
have the possibility to select several products and add them all to their cart at one time.

The ICS mechanisms at play here are the same as explained in the Product details page section, pages 8 and 9.

Check-in
A check-in is an action made by a customer to indicate that they want to report their presence in a particular
store. This allows them, among other things, to request personal advice from a sales associate.

Beware, though: any operation performed by the ICS connector on the cart cancels the check-in.

20/20Omni-channel considerationsDo not copy
© Intuiko 2014 — All rights reserved

Omni-channel considerations

MAGENTO PRODUCT TYPES
The Magento product types listed below are stocked in ICS with a specifi c Magento data frame (“buyRequest”).
Thus, a product of any of those types can only be added to the cart by an application that understands this
specifi c date frame.

Those types are:

• groups (wishlists only)

• downloadable (carts and wishlists)

• bundle (carts and wishlists)

• confi gurable, not complete (wishlist only)

CUSTOM OPTIONS
Magento allows you to implement custom options to your products.

Any product with custom options, wether it is added to a cart or wishlist, is stocked in ICS with a specifi c
Magento data frame (again, the one known as “buyRequest”). Thus, it can only be added to the cart by an
application that understands this specifi c date frame.

